How to Find the Limit of a Differential Equation

Download Article

Download Article

Finding the limits of functions is a fundamental concept in calculus. Limits are used to study the behaviour of a function around a particular point. Computing limits involves many methods, and this article outlines some of those.

Steps Download Article

  1. 1

    Use the method of direct substitution. If, for example, we have lim x 4 ( x + 4 ) {\displaystyle {\displaystyle \lim _{x\to 4}(x+4)}} , plug in 4 {\displaystyle 4} where x {\displaystyle x} is. That gives us 8 {\displaystyle 8} . The limit of f {\displaystyle f} , where f ( x ) = x + 4 {\displaystyle f(x)=x+4} , at x = 4 {\displaystyle x=4} is 8 {\displaystyle 8} . This might not always work, though; when the problem involves rational functions with a variable in the denominator, like lim x 2 x 2 4 x 2 {\displaystyle \lim _{x\to 2}{\frac {\mathrm {x^{2}-4} }{\mathrm {x-2} }}} , substituting 2 {\displaystyle 2} for x {\displaystyle x} will cause the function to equal 0 0 {\displaystyle {\frac {\mathrm {0} }{\mathrm {0} }}} , giving you an indeterminate form. Or, if you get an undefined result where the numerator is a non-zero value and the denominator is 0 {\displaystyle 0} , the limit does not exist.

  2. 2

    Try factoring out and cancelling terms that lead to 0 {\displaystyle {\frac {\mathrm {0} }{\mathrm {0} }}} or {\displaystyle {\frac {\mathrm {\infty } }{\mathrm {\infty } }}} . In the previous example lim x 2 x 2 4 x 2 {\displaystyle \lim _{x\to 2}{\frac {\mathrm {x^{2}-4} }{\mathrm {x-2} }}} , we can factor out and cancel x 2 {\displaystyle x-2} : lim x 2 ( x 2 ) ( x + 2 ) x 2 {\displaystyle \lim _{x\to 2}{\frac {\mathrm {(x-2)(x+2)} }{\mathrm {x-2} }}} = lim x 2 ( x + 2 ) {\displaystyle {\displaystyle \lim _{x\to 2}(x+2)}} . We can evaluate it by plugging in 2 {\displaystyle 2} and the limit is 4 {\displaystyle 4} .

  3. 3

    Try to multiply the numerator and the denominator with a conjugate. We have lim x 4 2 x 4 x {\displaystyle \lim _{x\to 4}{\frac {\mathrm {2-{\sqrt {x}}} }{\mathrm {4-x} }}} . If you multiply the numerator and denominator with ( 2 + x ) {\displaystyle (2+{\sqrt {x}})} will transform it into lim x 4 4 x ( 4 x ) ( 2 + x ) {\displaystyle \lim _{x\to 4}{\frac {\mathrm {4-x} }{\mathrm {(4-x)(2+{\sqrt {x}})} }}} . You can cancel out ( 4 x ) {\displaystyle (4-x)} to get a simpler lim x 4 1 2 + x {\displaystyle \lim _{x\to 4}{\frac {\mathrm {1} }{\mathrm {2+{\sqrt {x}}} }}} . This comes up to 1 4 {\displaystyle {\frac {\mathrm {1} }{\mathrm {4} }}} .

  4. 4

    Use trigonometric transformations. If your limit is lim θ 0 1 c o s θ θ {\displaystyle \lim _{\theta \to 0}{\frac {\mathrm {1-cos\theta } }{\mathrm {\theta } }}} , multiply the numerator and denominator with ( 1 + c o s θ ) {\displaystyle (1+cos\theta )} to get lim θ 0 1 c o s 2 θ ( θ ) ( 1 + c o s θ ) {\displaystyle \lim _{\theta \to 0}{\frac {\mathrm {1-cos^{2}\theta } }{\mathrm {(\theta )(1+cos\theta )} }}} . Use s i n 2 θ + c o s 2 θ = 1 {\displaystyle sin^{2}\theta +cos^{2}\theta =1} and separate the multiplied fractions to obtain lim θ 0 s i n θ {\displaystyle \lim _{\theta \to 0}sin\theta } {\displaystyle *} s i n θ θ {\displaystyle {\frac {\mathrm {sin\theta } }{\mathrm {\theta } }}} {\displaystyle *} 1 ( 1 + c o s θ ) {\displaystyle {\frac {\mathrm {1} }{\mathrm {(1+cos\theta )} }}} . You can plug in 0 {\displaystyle 0} to get 0 1 1 {\displaystyle 0*1*1} . The limit is 0 {\displaystyle 0} .

  5. 5

    Find limits at infinity. lim x 0 1 x {\displaystyle \lim _{x\to 0}{\frac {\mathrm {1} }{\mathrm {x} }}} has a limit at infinity. It cannot be simplified to be a finite number. Examine the graph of the function if this is the case. For the limit in the example, if you look at the graph of y = 1 x {\displaystyle y={\frac {\mathrm {1} }{\mathrm {x} }}} , you will see that y {\displaystyle {\displaystyle y\to \infty }} as x 0 {\displaystyle {\displaystyle x\to 0}} .

  6. 6

    Use L'Hôpital's rule. This is used for indeterminate forms like 0 0 {\displaystyle {\frac {\mathrm {0} }{\mathrm {0} }}} or {\displaystyle {\frac {\mathrm {\infty } }{\mathrm {\infty } }}} . This rule states that for functions f and h differentiable on an open interval I except at a point c in I, if lim x c f ( x ) {\displaystyle {\displaystyle \lim _{x\to c}f(x)}} = lim x c h ( x ) = 0 {\displaystyle {\displaystyle \lim _{x\to c}h(x)}=0} or lim x c f ( x ) {\displaystyle {\displaystyle \lim _{x\to c}f(x)}} = lim x c h ( x ) = ± {\displaystyle {\displaystyle \lim _{x\to c}h(x)}=\pm \infty } and h ( x ) 0 {\displaystyle {\displaystyle h'(x)\neq 0}} for all x c {\displaystyle {\displaystyle x\neq c}} in I {\displaystyle I} and if lim x c f ( x ) h ( x ) {\displaystyle \lim _{x\to c}{\frac {\mathrm {f'(x)} }{\mathrm {h'(x)} }}} exists, lim x c f ( x ) h ( x ) = lim x c f ( x ) h ( x ) {\displaystyle \lim _{x\to c}{\frac {\mathrm {f(x)} }{\mathrm {h(x)} }}=\lim _{x\to c}{\frac {\mathrm {f'(x)} }{\mathrm {h'(x)} }}} . This rule converts indeterminate forms to forms that can be easily evaluated. For example, lim θ 0 s i n θ θ {\displaystyle \lim _{\theta \to 0}{\frac {\mathrm {sin\theta } }{\mathrm {\theta } }}} = lim θ 0 c o s θ 1 {\displaystyle \lim _{\theta \to 0}{\frac {\mathrm {cos\theta } }{\mathrm {1} }}} = 1 1 {\displaystyle {\frac {\mathrm {1} }{\mathrm {1} }}} = 1 {\displaystyle 1} .

Add New Question

  • Question

    How can I find the limit of a function using trigonometric identities?

    Helpie

    If your limit involves trigonometric terms, such as sine or cosine, try to replace parts of the function with alternative forms of the terms if direct substitution gives you an indeterminate form. For example, if your function is f(x) = (1 - cos²x)/(sinx), you could replace 1 - cos²x with sin²x (as sin²x + cos²x = 1) and then cancel the sinx in the denominator, leaving you with f(x) = sinx.

  • Question

    What should I do if direct substitution gives me 0/0?

    Helpie

    If directly substituting results in the function equalling 0/0, try factoring, multiplying by conjugates, using alternative forms of trigonometric functions, or L'Hopital's rule to discover the limit. If none of these methods can be used, approximate the limit from a graph or table or by substituting nearby values at different intervals.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit


Thanks for submitting a tip for review!

About This Article

Thanks to all authors for creating a page that has been read 9,490 times.

Did this article help you?

How to Find the Limit of a Differential Equation

Source: https://www.wikihow.com/Find-the-Limit-of-a-Function

0 Response to "How to Find the Limit of a Differential Equation"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel